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Figure S.1: three-dimensional hypercube (left) and extended hypercube (right).

S.1 Additional illustrations

Recall that our measure of global connectivity of the graph G is λ2, the second smallest

eigenvalue of the normalized Laplacian matrix. In the following we provide some concrete

examples of graphs for which λ2 can be explicitly calculated, and we discuss the implications

of our variance bound in Theorem 2

Our first example illustrates that, even if λ2 → 0 with the sample size, we may still

have that var(α̂i) � d−1i .

Example S.1 (Hypercube graph). Consider the N-dimensional hypercube, where each of

n = 2N vertices is involved in N edges; see the left hand side of Figure S.1. This is an

N-regular graph — that is, di = hi = N for all i — with the total number of edges in the

graph equaling 2N−1. Here,

λ2 =
2

N
= O((lnn)−1).

Thus, λ2 hi is constant in n. An application of Theorem 2 yields

1 + o(1) ≤ N var(α̂i)

σ2
≤ 3

2
+ o(1).

From this, we obtain the convergence rate result (α̂i − αi) = Op

(
(lnn)−1/2

)
.

Theorem 2 allows to establish the convergence rate for the hypercube, but the conditions

are too stringent to obtain (12). The reason is that hi does not increase fast enough to
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Figure S.2: Star graph (left) and Wheel graph (right) for n = 8.

ensure that λ2 hi → ∞. The following example deals with an extended hypercube and

illustrates that, despite λ2 → 0, we still have λ2 hi →∞ in this case.

Example S.2 (Extended Hypercube graph). Start with the N-dimensional hypercube G

from the previous example and add edges between all path-two neighbors in G; see the right

hand side of Figure S.1 for an example. The resulting graph still has n = 2N vertices, but

now has N(N + 1) 2N−1 edges. Here,

di = hi =
N(N + 1)

2
, λ2 =

4

N + 1
,

so that λ2 hi → ∞ holds, despite λ2 → 0 as n → ∞. Theorem 2 therefore implies (12) in

this example.

The next example shows that our bound can still be informative if hi is finite.

Example S.3 (Star graph). Consider a Star graph around the central vertex 1, that is, the

graph with n vertices and edges

E = {(1, j) : 2 ≤ j ≤ n};

see the left hand side of Figure S.2. Here, λ2 = 1 for any n while d1 = n− 1, h1 = 1 and

di = 1, hi = n− 1 for i 6= 1. For i = 1 one finds that the bounds in Theorem 2 imply that
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var(α̂1) = O(n−1), and so

(α̂1 − α1) = Op

(
n−1/2

)
.

In contrast, for i 6= 1 we find λ2 hi →∞ and thus, although (12) holds, these αi cannot be

estimated consistently as di = 1.

The previous example also illustrates that λ2 can be large despite having many vertices

with small degrees. It is largely due to this property that we prefer to measure global

connectivity by λ2 and not by the “algebraic connectivity” (the second smallest eigenvalue

of L; see, e.g., Chung 1997), which has been studied more extensively.

Our last example shows the effect on the upper bound in Theorem 2 when neighbors

themselves are more strongly connected.

Example S.4 (Wheel graph). The Wheel graph is obtained on combining a Star graph

centered at vertex 1 with a Cycle graph on the remaining n− 1 vertices; see the right hand

side of Figure S.2. Thus, a Wheel graph contains strictly more edges than the underlying

Star graph, although none of these involve the central vertex directly. From Butler (2016),

we have

λ2 = min

{
4

3
, 1− 2

3
cos

(
2π

n

)}
,

which satisfies λ2 ≥ 1 only for n ≤ 4, and converges to 1/3 at an exponential rate. However,

while, as in the Star graph, d1 = n − 1, we now have that hi = 3 for all i 6= 1. Hence,

λ2 h1 > 1 for any finite n and the upper bound in Theorem 2 is strictly smaller than in the

Star graph.

The last two examples also illustrate that adding edges to the graph (in this case, to

obtain the Wheel graph from the Star graph) can result in a decrease of our measure of

global connectivity λ2. This is not a problem, however, for our results as we only require

that λ2 be sufficiently different from zero. The Wheel graph with λ2 ≥ 1/3, for example,

clearly describes a very well globally connected graph by that measure.
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S.2 Variance bounds for differences

Our focus in the main text has been inference on the αi, under the constraint in (3),∑
i diαi = 0. An alternative to normalizing the parameters that may be useful in certain

applications is to focus directly on the differences αi − αj for all i 6= j. An example where

this is the case is Finkelstein, Gentzkow and Williams (2016). We give a corresponding

version of Theorem 2 here.

Let dij :=
∑

k∈V (A)ik (A)jk. for an unweighted graph dij = |[i] ∩ [j]|, the number of

vertices that are neighbors of both i and j. Write

hij :=


(

1

dij

∑
k∈V

(A)ik (A)jk
dk

)−1
for dij 6= 0,

∞ for dij = 0,

for the corresponding harmonic mean of the degrees of the vertices k ∈ [i] ∩ [j]. We have

the following theorem.

Theorem S.1 (First-order bound for differences). Let G be connected. Then

σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
≤ var(α̂i − α̂j) ≤ σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
+
σ2

λ2

(
1

dihi
+

1

djhj
− 2 dij
didjhij

)
.

For a simple graph G, when [i] = [j] but i /∈ [j] and i /∈ [j], that is, when vertices i and j

share exactly the same neighbors and are not connected themselves, the theorem implies

var(α̂i − α̂j) = σ2

(
1

di
+

1

dj

)
, (S.1)

as, in that case, both (A)ij and the second term in the upper bound in Theorem S.1 are

zero.
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S.3 Alternative normalization

If we change the normalization constraint in the least-squares minimization problem (4) to

n∑
i=1

αi = 0,

we obtain the estimator α̂ � = Mια̂, where Mι = In−n−1ιnι′n is the projector orthogonal

to ιn. We then have var (α̂ �) = σ2L†, because this variance needs to satisfy var (α̂ �) ιn =

0, and the Moore-Penrose pseudoinverse guarantees that the nullspace of L equals the

nullspace of L†. Thus, changing the normalization corresponds to changing the particular

pseudoinverse of L that features in the expression for the variance. From α̂ � = Mια̂ we

find

var (α̂ �) = Mιvar (α̂)Mι,

which thus also shows that L† = MιL
?Mι. We have L? ≤ λ−12 D

−1, and therefore L† ≤

λ−12 MιD
−1Mι. We thus find var(α̂ �i ) = σ2e′iL

†ei ≤ λ−12 σ2e′iMιD
−1Mιei, and evaluating

the last expression gives the following theorem.

Theorem S.2 (Global bound under alternative normalization). Let G be connected. Then

var(α̂ �i ) ≤ 1

di

σ2

λ2

(
1 +

di
nh

)
.

Notice that di/(nh) ≤ 1/h ≤ 1, and therefore var(α̂ �i ) ≤ 2
di

σ2

λ2
. For the estimator α̂i

obtained under the normalization in the main text we immediately find from (6) and(
S†
)
ii
≤ λ−12 that var(α̂i) ≤ 1

di

σ2

λ2
. Thus, for sequences of growing networks we find the

pointwise consistency results (α̂ �i − αi)
p→ 0 and (α̂i − αi)

p→ 0 for both estimators, under

the sufficient condition λ2 di →∞.

Analogously one can extend Theorem 2 from α̂i to α̂ �i as follows.

Theorem S.3 (First-order bound under alternative normalization). Let G be connected.

Then

σ2

di

(
1− 2

n

)
− 2σ2

nh
(2)
i

≤ var(α̂ �i ) ≤ σ2

di

(
1 +

1

λ2hi

)
+
σ2

h

(
2

n
+

1

λ2H

)
,
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where h
(2)
i =

(
1
di

∑
j∈[i]

(A)ij
dj

)−1
, and h and H defined in the main text.

Analogous to (12) in the main text we thus find

var(α̂ �i ) =
σ2

di
+ o(d−1i ),

provided that λ2hi → ∞ and nh/di → ∞ and nh
(2)
i /di → ∞ and λ2 hH/di → ∞ as

n → ∞. Therefore, under plausible assumptions on the sequence of growing networks we

find the same asymptotic properties for α̂ �i as for α̂i. The particular choice of normalization

in the main text is not necessary for our main results, but it makes all derivations as well

as the presentation of the results more convenient.

S.4 Proofs

PROOF OF THEOREM 1 (EXISTENCE)

The estimator is defined by the constraint minimization problem in (4). For convenience

we express the constraint in quadratic form, (a′d)2 = 0. By introducing the Lagrange

multiplier λ > 0 we can write

α̌ = arg min
a∈Rn

(y −Ba)′MX(y −Ba) + λ (a′d)
2
.

Solving the corresponding first-order condition we obtain

α̌ = (B′MXB + λdd′)
−1
B′MXy

= D−1/2 (SX + λψψ′)
−1
D−1/2B′y, (S.2)

where SX := D−1/2B′MXBD
−1/2 and ψ := D1/2ιn = D−1/2d. Since we assume that

the graph is connected we have di > 0 for all i, that is, D is invertible. Our assumption

rank((X,B)) = p+n−1 implies that rank(B′MXB) = n−1, that is, the zero eigenvalue

of B′MXB has multiplicity one. By construction of B we have Bιn = 0, that is, the

zero eigenvector of B′MXB is given by ιn. It follows that the zero eigenvalue SX has

multiplicity one and eigenvector ψ. This explains why the matrix SX+λψψ′ is invertible,
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which we already used in (S.2). Furthermore, the matrices SX and ψψ′ commute, and by

properties of the Moore-Penrose inverse we thus have

(SX + λψψ′)
−1

= S†X + λ−1 (ψψ′)
†
. (S.3)

We furthermore have

(ψψ′)
†

= m−2ψψ′, (S.4)

where m = ψ′ψ is the total number of observations. Because Bιn = 0, the contribution

from (ψψ′)† drops out of (S.2), and we obtain

α̌ = D−1/2S†XD
−1/2B′y = (B′MXB)

?
B′y,

according to the definition of the pseudoinverse ? in the main text. Notice that α̌ given in

the last display does not depend on λ, and automatically satisfies the constraint d′α̌ = 0,

that is, any value of λ can be chosen in the above derivation. �

PROOF OF THEOREMS 2 AND S.1 (VARIANCE BOUNDS)

We first show that, if G is connected, then

0 ≤
[
var(α̂)− σ2

(
D−1 +D−1AD−1 − 2m−1 ιnι

′
n

)]
≤ σ2

λ2
D−1AD−1AD−1. (S.5)

Theorems 2 and S.1 will then follow readily. Analogous to (S.3) we also hav (S + λψψ′)−1 =

S† + λ−1 (ψψ′)†. Using this and (S.4) we find

In = (S + λψψ′)
−1

(S + λψψ′)

=
(
S† + λ−1m−2ψψ′

)
(S + λψψ′) ,

and since Sψ = 0 and ψ′ψ = m we thus find that S†S = In−m−1ψψ′, which is simply the

idempotent matrix that projects orthogonally to ψ. We thus find L?L = D−1/2S†SD1/2 =

In −m−1ιnd′. Plugging in L = D −A, and then solving for L? gives

L? = D−1 +L?AD−1 −m−1 ιnι′n. (S.6)
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The Laplacian is symmetric, and so transposition gives

L? = D−1 +D−1AL? −m−1 ιnι′n. (S.7)

Replacing L? on the right-hand side of (S.6) by the expression for L? given by (S.7), and

also using that D−1Aιn = ιn, yields

L? = D−1 +D−1AD−1 +D−1AL?AD−1 − 2m−1 ιnι
′
n. (S.8)

Re-arranging this equation allows us to write

L? −
(
D−1 +D−1AD−1 − 2m−1 ιnι

′
n

)
= D−1AL?AD−1.

From L∗ = D−1/2S†D−1/2 and 0 ≤ S† ≤ λ−12 In we obtain 0 ≤ L? ≤ λ−12 D
−1, and

therefore

0 ≤D−1AL?AD−1 ≤ λ−12 D
−1AD−1AD−1.

Put together this yields

0 ≤ L? −
(
D−1 +D−1AD−1 − 2m−1 ιnι

′
n

)
≤ λ−12 D

−1AD−1AD−1,

and multiplication with σ2 gives the bounds stated in (S.5).

To show Theorems 2 and S.1 we calculate, for i 6= j,

e′iD
−1 ei = d−1i ,

e′iD
−1 ej = 0,

e′iD
−1AD−1 ei = 0,

e′iD
−1AD−1 ej = d−1i d−1j (A)ij,

e′iD
−1AD−1AD−1 ei = d−1i h−1i ,

e′iD
−1AD−1AD−1 ej = d−1i d−1j dijh

−1
ij ,

e′i ιnι
′
nei = 1,

e′i ιnι
′
n ej = 1,

where ei is the vector that has one as its ith entry and zeros elsewhere. Combining these

results with (S.5) gives the bounds on, respectively, var(α̂i) = e′ivar(α̂)ei and var(α̂i−α̂j) =

(ei − ej)′var(α̂)(ei − ej) stated in the theorems. �
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PROOF OF THEOREMS S.2 AND S.3

Using that L∗ ≤ λ−12 D
−1 we find that

var(α̂ �i ) = e′ivar (α̂ �) ei = e′iMιvar (α̂)Mιei = σ2e′iMιL
∗Mιei

≤ λ−12 σ2e′iMιD
−1Mιei,

and we calculate

e′iMιD
−1Mιei = e′iD

−1ei −
2

n
e′iD

−1ιn +
1

n2
ι′nD

−1ιn

=
1

di
− 2

n di
+

1

nh
. (S.9)

Combing those results gives the statement of Theorem S.2

Next, multiplying Mι from the left and right to the matrix bounds (S.5) and using

var (α̂ �) = Mιvar (α̂)Mι gives

0 ≤
[
var (α̂ �)− σ2Mι

(
D−1 +D−1AD−1

)
Mι

]
≤ σ2

λ2
MιD

−1AD−1AD−1Mι,

and therefore

0 ≤
[
var(α̂ �i )− σ2e′iMι

(
D−1 +D−1AD−1

)
Mιei

]
≤ σ2

λ2
e′iMιD

−1AD−1AD−1Mιei.

We already calculated e′iMιD
−1Mιei in (S.9) above. We furthermore have

e′iMιD
−1AD−1Mιei = e′iD

−1AD−1ei −
2

n
e′iD

−1AD−1ιn +
1

n2
ι′n D

−1AD−1ιn

= 0− 2

n di

∑
j∈[i]

(A)ij
dj

+
1

n2

n∑
j,k=1

(A)jk
djdk

,

and by applying the Cauchy-Schwarz inequality we find
∑

j,k
(A)jk
djdk

≤
∑

j,k
(A)jk
d2j

=
∑

j
1
dj

,

and therefore

− 2

nh
(2)
i

≤ e′iMιD
−1AD−1Mιei ≤

1

nh
.

Similarly, e′iMιD
−1AD−1AD−1Mιei ≥ 0 contains three terms, for which we have

e′iD
−1AD−1AD−1ei =

1

di hi
,

10



− 2

n
e′iD

−1AD−1AD−1ιn = − 2

n di

∑
j∈[i]

(A)ij
dj

∑
k∈[j]

(A)jk
dk

≤ 0,

1

n2
ι′nD

−1AD−1AD−1ιn =
1

n2

∑
i,j,k

(A)ij(A)jk
didjdk

≤ 1

n2

∑
i,j,k

(A)2ij
d2i dj

=
1

n

∑
i

1

dihi
=

1

hH
,

where in the last line we again applied the Cauchy-Schwarz inequality, and the definitions

of the harmonic means h and H in the main text. Combining the above gives the statement

of Theorem S.3.

PROOF OF THEOREM 3 (COVARIATES)

Define the n× n matrix

C := (B′B)
?
B′X (X ′X)

−1
X ′B.

Let λi(C) denote the ith eigenvalue of C, arranged in ascending order. C is similar to the

positive semi-definite matrix

(X ′X)
−1/2

X ′B (B′B)
?
B′X (X ′X)

−1/2
,

and since similar matrices share the same eigenvalues we have λ1(C) ≥ 0. C is also similar

to the matrix

B (B′B)
?
B′X (X ′X)

−1
X ′,

which is the product of two projection matrices, whose spectral norm is thus bounded by

one. Hence, λn(C) ≤ 1. In addition, we must have λi(C) 6= 1 for any 1 < i < n because,

otherwise, rank (In −C) < n, which implies that rank(B′MXB) < n − 1, contradicting

our non-collinearity assumption (since the graph is connected we have rank(B′B) = n− 1,

which together with the non-collinearity assumption rank((X,B)) = p+n−1 implies that

rank(B′MXB) = n−1). We therefore have ‖C‖2 < 1, implying that Im−C is invertible.

Using (S.3) and (S.4) with λ = m−1 we find that (B′MXB +m−1Dιnι
′
nD)

−1
=

(B′MXB)? +m−1 ιnι
′
n, or equivalently

B′MXB +m−1Dιnι
′
nD =

[
(B′MXB)? +m−1 ιnι

′
n

]−1
,
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and analogously we have

B′B +m−1Dιnι
′
nD =

[
(B′B)? +m−1 ιnι

′
n

]−1
. (S.10)

Subtracting the expressions in the last two displays gives

B′X (X ′X)
−1
X ′B =

[
(B′B)? +m−1 ιnι

′
n

]−1 − [(B′MXB)? +m−1 ιnι
′
n

]−1
,

and by multiplying with [(B′B)? +m−1 ιnι
′
n] from the left and [(B′MXB)? +m−1 ιnι

′
n]

from the right, and using Bιn = 0, we obtain

(B′B)?B′X (X ′X)
−1
X ′B(B′MXB)? = (B′MXB)? − (B′B)?,

which can equivalently be expressed as (Im −C) (B′MXB)? = (B′B)?. We have already

argued that (Im −C) is invertible, and therefore

(B′MXB)? = (Im −C)−1 (B′B)
?
.

Since ‖C‖2 < 1 we can expand (Im −C)−1 in powers of C, as

(B′MXB)? =
∞∑
r=0

Cr (B′B)
?
. (S.11)

Defining the p× p matrix

C̃ := (X ′X)
−1/2

X ′B (B′B)
?
B′X (X ′X)

−1/2

we can rewrite (S.11) as

(B′MXB)? = (B′B)
?

+ (B′B)
?
B′X (X ′X)

−1/2

(
∞∑
r=0

C̃ r

)
(X ′X)

−1/2
X ′B (B′B)

?
.

The parameter ρ defined in the main text satisfies

ρ =
∥∥(X ′X)−1/2X ′MBX(X ′X)−1/2

∥∥
2

=
∥∥∥Ip − C̃∥∥∥

2
= 1− ‖C̃‖2,

that is, we have ‖C̃‖2 = 1 − ρ, and since C̃ is symmetric and semi-definite this can

equivalently be written as C̃ ≤ (1− ρ)Ip. Therefore,

∞∑
r=0

C̃ r ≤
∞∑
r=0

(1− ρ)r Ip = ρ−1 Ip.
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We thus have

(B′MXB)? − (B′B)
?

= (B′B)
?
B′X (X ′X)

−1/2

(
∞∑
r=0

C̃ r

)
(X ′X)

−1/2
X ′B (B′B)

?

≤ 1

ρ
(B′B)

?
B′X (X ′X)

−1
X ′B (B′B)

?
, (S.12)

and, therefore,

var (α̌i)− var (α̂i) = σ2 e′i
[
(B′MXB)? − (B′B)

?]
ei

≤ σ2

ρ
e′i

[
(B′B)

?
B′X (X ′X)

−1
X ′B (B′B)

?
]
ei.

Using the expression (S.6) and (S.7) for (B′B)? = L? we obtain

e′i (B
′B)

?
B′X (X ′X)

−1
X ′B (B′B)

?
ei

= e′iL
?B′X (X ′X)

−1
X ′BL?ei

= e′i
(
D−1 +D−1AL?

)
B′X (X ′X)

−1
X ′B

(
D−1 +L?AD−1

)
ei

≤ T
(1)
i + T

(2)
i + 2

√
T

(1)
i T

(2)
i ,

where

T
(1)
i := e′iD

−1B′X (X ′X)
−1
X ′BD−1ei,

T
(2)
i := e′iD

−1AL?B′X (X ′X)
−1
X ′BL?AD−1ei,

and we used the Cauchy-Schwarz inequality to bound the mixed term. Again, because

similar matrices have the same eigenvalues we have

‖(L?)1/2B′X (X ′X)
−1
X ′B (L?)1/2‖2 = ‖C̃‖2 = 1− ρ,

and therefore,

T
(2)
i = e′iD

−1A (L?)1/2
[
(L?)1/2B′X (X ′X)

−1
X ′B (L?)1/2

]
(L?)1/2AD−1ei

≤ (1− ρ) e′iD
−1AL?AD−1ei

≤ 1− ρ
λ2

e′iD
−1AD−1AD−1ei

=
1− ρ
λ2 di hi

,
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where in the last step we used e′iD
−1AD−1AD−1ei = (dihi)

−1. Using our definitions

xi = X ′BD−1ei and Ω = X ′X/m we obtain

T
(1)
i = e′iD

−1B′X (X ′X)
−1
X ′BD−1ei =

1

m
x′iΩ

−1xi.

Combining the above results we find

var (α̌i)− var (α̂i) ≤
σ2

ρ

(
T

(1)
i + T

(2)
i + 2

√
T

(1)
i T

(2)
i

)
≤ σ2

ρ

(
1

m
x′iΩ

−1xi +
1− ρ
λ2 di hi

+ 2

√
1

m
x′iΩ

−1xi
1− ρ
λ2 di hi

)
.

For any a, b ≥ 0 we have a + b + 2
√
ab ≤ 2(a + b). Thus, a slightly cruder but simpler

bound is given by

|var (α̌i)− var (α̂i)| ≤
2σ2

ρ

(
x′iΩ

−1xi
m

+
1− ρ
λ2 di hi

)
,

where we also used that var (α̌i) ≥ var (α̂i), because adding regressors can only increase

the variance of the least squares estimator under homoskedasticity. �

PROOF OF THEOREM 4 (FIRST ORDER REPRESENTATION)

Remember that we treat B and X as fixed (i.e. non-random) throughout. Let β̌ :=

(X ′MBX)−1X ′MBy. Using the model for y we find β̌ − β = (X ′MBX)−1X ′MBu.

Using our assumptions E(u) = 0 and Σ ≤ Imσ2 we find E(β̌ − β) = 0 and

E(
(
β̌ − β

) (
β̌ − β

)′
) = (X ′MBX)

−1
X ′MBΣMBX (X ′MBX)

−1

≤ σ2 (X ′MBX)
−1
X ′MBImMBX (X ′MBX)

−1

= σ2 (X ′MBX)
−1
. (S.13)

The result in (S.10) can be rewritten as

L? =
(
L+m−1dd′

)−1 −m−1 ιnι′n. (S.14)

The constrained least-squares estimator in (4) can be expressed as

α̌ = argmin
a∈{a∈Rn:d′a=0}

∥∥y −Xβ̌ −Ba∥∥2 , (S.15)
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and analogous to Theorem 1 we then find α̌ = L?B′
(
y −Xβ̌

)
= (L+m−1dd′)

−1
B′(

y −Xβ̌
)
. Multiplying by (L+m−1dd′) from the left and using our normalization d′α̌ =

0 gives

Lα̌ = B′
(
y −Xβ̌

)
.

Plugging L = D −A and y = Bα +Xβ + u into the last display, multiplying from the

left with D−1, and rearranging terms, we obtain

α̌−α = D−1B′u+ ε+ ε̃, (S.16)

where

ε := D−1A (α̌−α) , ε̃ := −D−1B′X
(
β̌ − β

)
.

We have E(β̌−β) = 0 and E(α̌−α) = 0, and, therefore, also E(ε) = 0 and E(ε̃) = 0. The

definition ρ = ‖(X ′X)−1X ′MBX‖2 can equivalently be written as ρX ′X ≥ X ′MBX,

and therefore ρ−1 (X ′X)−1 ≤ (X ′MBX)−1. Using this and (S.13) we obtain

E(ε̃ε̃ ′) ≤ σ2D−1B′X (X ′MBX)
−1
X ′BD−1

≤ σ2

ρ
D−1B′X (X ′X)

−1
X ′BD−1.

Using α̌−α = (B′MXB)?B′MXu and the assumption Σ ≤ σ2In we calculate

E(εε′) = D−1A(B′MXB)?B′MXΣMXB(B′MXB)?AD−1

≤ σ2D−1A(B′MXB)?B′MXB(B′MXB)?AD−1

= σ2D−1A(B′MXB)?AD−1

≤ σ2D−1A(B′B)?AD−1 +
σ2

ρ
D−1A (B′B)

?
B′X (X ′X)

−1
X ′B (B′B)

?
AD−1,

where in the last step we used (S.12). Since furthermore X (X ′X)−1X ′ ≤ Im and

(B′B)? = L? ≤ λ−12 D
−1 we obtain

E(εε′) ≤ σ2D−1A(B′B)?AD−1 +
σ2

ρ
D−1A (B′B)

?
B′B (B′B)

?
AD−1

=
σ2(1 + ρ)

ρ
D−1A(B′B)?AD−1

≤ σ2(1 + ρ)

λ2 ρ
D−1AD−1AD−1.
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Denote the elements of ε and ε̃ by εi and ε̃i. Equation (S.16) can then be written as

α̌i − αi =
b′iu

di
+ εi + ε̃i,

and we have

E(ε2i ) ≤
σ2(1 + ρ)

λ2 ρ
e′iD

−1AD−1AD−1ei =
σ2(1 + ρ)

λ2 ρ

1

di hi
,

and

E(ε̃ 2i ) ≤ σ2

ρ
e′iD

−1B′X (X ′X)
−1
X ′BD−1ei =

1

m

σ2

ρ
x′iΩ

−1 xi.

where we used our definitions xi = X ′bi/di = X ′BD−1ei and Ω := X ′X/m. �

PROOF OF THEOREM 5 (ASYMPTOTIC DISTRIBUTION)

We have ρ ≤ 1 by definition. Together with the assumptions σ2 = O(1), λ2hi → ∞,

and the conditions in (13) this implies that E(ε2i ) ≤ σ2(1 + ρ)/(ρ di λ2 hi) = o(d−1i ), and

E(ε̃ 2i ) ≤ σ2 x′iΩ
−1 xi/(ρm) = o(d−1i ). By Markov’s inequality we thus have εi = op(d

−1/2
i )

and ε̃i = op(d
−1/2
i ), and applying Theorem 4 gives, as di →∞,

(α̌i − αi)
p→ b′iu

di
=

1

di

∑
j∈[i]

∑
e∈E(i,j)

νεei, νεei := (B)εei uεe .

The number of terms νεei summed over in the last display grows to infinity asymptotically,

because we assume that di =
∑

j∈[i]
∑

e∈E(i,j)
we → ∞, while the weights we = (B)2εei

are bounded. Our assumptions furthermore guarantee that the νεei are independent and

satisfy E(νεei) = 0, E(ν2εei) ≥ c1 > 0, and E(|νεei|
3) ≤ c2 < ∞ for constants c1, c2. Thus,

the Lyapunov condition is satisfied, and the statement of the theorem then follows from a

standard application of Lyapunov’s central limit theorem. �
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